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Abstract


Digital holography (DH) has been demonstrated to be an effective tool for tactical


applications which involve in low signal-to-noise ratios (SNR). In practice, DH uses


a strong reference beam from a local oscillator (LO) to scale SNR, however since DH


relies on the interference of a signal beam with a mutually coherent LO, the coher-


ence properties of the master oscillator (MO) can degrade system SNR for long range


engagements. In this thesis, a digital holography system in the off-axis image plane


recording geometry was assembled and used to measure the effects of the coherence


properties of the MO on SNR. The coherence properties of the MO were degraded us-


ing sinusoidal phase modulation that imparted maximum phase shifts of 0.38π, 0.55π,


and 0.73π at modulation frequencies of 20 MHz to 100 MHz. A relative visibility-


squared model was developed and used to predict the the measured efficiency losses.


Predictions were computed both from the modulator specifications, and from mea-


surements taken using a Fabry-Perot interferometer, and at best the measurements


deviated from the predictions by root-mean-square errors of 0.0378, 0.0373, and 0.391


for depths of modulation 0.38π, 0.55π, and 0.73π, respectively. Coherence efficiencies


were measured at baseline SNRs of 75, 100, and 125 at the greatest depth of modula-


tion, and it was found that the system’s baseline SNR did not significantly impact the


coherence efficiency in the high SNR regime. Overall, the empirical data and models


presented in this work may be used to assess efficiency losses in a DH system due to


coherence effects.
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Introduction


Digital holography (DH) has a wide variety of applications including microscopy,


imaging, and wave-front sensing due to its capability to encode and reconstruct the


amplitude and phase of the complex electric field diffracted from a target object.


In the remote sensing application, DH can be used to construct coherent (complex-


valued) 2-dimensional (2-D) or 3-dimensional (3-D) images, and it can be used as a


wave-front sensor for adaptive optics. Since DH relies on interfering a received signal


with a mutually coherent reference to form an interferogram, the performance of the


system at long range depends on the coherence length of the master oscillator (MO),


from which both the reference and illuminator originate. In general, the round-trip


distance to the target under interrogation should be less than the coherence length


for DH using a continuous-wave (CW) source to be effective. Even if this requirement


is satisfied, performance of the system degrades as distance to the target increases


because the difference in optical path length between the signal and LO paths is in-


creased. Degradation of system performance due to source coherence can be measured


as a loss of signal-to-noise ratio (SNR) and quantified as a multiplicative system effi-


ciency, namely the coherence efficiency. Thus, it is an important systems-engineering


task to characterize the coherence efficiency of a DH system as the coherence efficiency


dictates the operating range of the CW system. The primary goal of this effort is to


isolate and quantify the effects of the temporal coherence properties of the source on


the SNR of the DH system using experimental data.


When propagating light over 10s to 100s of kilometers, whether for imaging or di-


rected energy applications, atmospheric effects become increasingly significant. Adap-


tive optics employs wave-front sensing techniques in order to correct phase aberra-


tions due to atmospheric propagation. Digital holography has emerged as a viable


alternative to the traditional Shack-Hartmann wave-front sensor, which performs
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poorly in the presence strong scintillation [6, 7]. By estimating the phase function of


the estimated complex wave-front, phase error correction techniques may be applied


[18, 19, 27]. Extensive wave-optics simulations have been performed for DH imple-


mented in various geometries to analyze their performance in the presence of strong


turbulence. The performance of DH in the off-axis image plane recording geometry


(IPRG) was simulated in [22, 23]. Similar simulations were performed for two other


geometries, namely the off-axis pupil plane recording geometry (PPRG) [5] and the


on-axis phase shift recording geometry (PSRG) [25]. While the simulations analyzed


the performance of DH in the presence of deep atmospheric turbulence, the simu-


lations assume a perfectly monochromatic, and therefore perfectly coherent source,


which is unrealistic in practice. Long range DH experiments have been conducted


at ranges of 100 m [16], however the authors state the ”coherence length was signif-


icantly longer than the 200 m round trip path length and thus the return light and


reference beam interfered coherently.” Other 100 m range DH experiments were con-


ducted with pulsed laser systems [15, 17], and in these experiments source coherence


is not addressed.


Another advantage of DH is that its SNR can be scaled by increasing the power


to the local oscillator (LO) that produces the reference field to remedy any efficiency


losses. Interfering the signal with the LO couples the LO energy into the signal esti-


mate, which is recovered using digital signal processing. A SNR model was developed


in [10] for coherent detection. In general this model analyzed the effect of the spatial


distributions of the reference and signal field over the detector surface. SNR models


for each of the three DH geometries discussed above were derived in [21], and veri-


fied using wave-optics simulations [24]. A comprehensive survey of factors that cause


efficiency losses in a DH system was conducted in [26] and validated experimentally,


however efficiency losses due to coherence are not considered.
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The effects of source coherence on DH have been examined in scenarios where the


signal and reference path lengths are matched [8]. Here, the coherence requirement is


defined by the size and depth of the target. The coherence efficiency was also consid-


ered in the context light detection and ranging (LIDAR [12]. The authors quantified


the coherence efficiency with respect to the length of the integration window, which


is different from the application discussed in this thesis. Regardless, the coherence


theory applied will be similar to the ones discussed in [8] and [12].


There are applications in which degraded coherence of a source used for DH is


desired. The effects of speckle, a consequence of coherent illumination, can be miti-


gated by decohering the light. In fiber laser applications, beam decoherence methods


have been investigated as a solution to the problem of stimulated Brillouin scattering


in [1, 2, 3]. The authors compared the effectiveness of phase modulating the source


using pseudo-random, filtered pseudo-random, and white noise signals. The effects of


using these phase-modulated beams for DH, however, is not discussed.


Although interferometry is at the heart of DH, the impacts of coherence on the


SNR of a DH system have not been thoroughly investigated. Wave optics simulations


assume a perfectly coherent source, and scaled-laboratory experiments are generally


performed within the coherence length of the source, or use path length matching


to overcome performance degradation due to coherence. This thesis presents data


collected from a laboratory off-axis IPRG DH system which has the capability to


degrade the source coherence in a controlled environment using an electro-optical


phase modulator (EOPM) is used to sinusoidally modulate a 532nm CW laser source


which is used as the MO for a digital holography system. The effects of the frequency


of modulation and the amplitude of the applied phase shift on the SNR of the DH


system are measured and analyzed within the framework of coherence theory.


The remainder of this thesis is structured as follows. Chapter II will present the
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background information required to interpret the data collected for this thesis. Wave-


front reconstruction using digital holography in the IPRG is presented in addition to


a SNR model. Coherence theory is discussed and used to predict the coherence


efficiencies that should result for a specific frequency and depth of modulation. In


Chapter III, the DH system used to measure the data is introduced and data collection


methods are discussed. Measured relative coherent efficiencies (RCE) are presented


in Chapter IV, and conclusions are presented in Chapter V.
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II. Background


Digital Holography


Holography is the two-step process of recording and reconstructing the electro-


magnetic field scattered from an object. Unlike photography, which records only


the irradiance of the scattered field, holography recovers both amplitude and phase.


Dennis Gabor, who developed the method in 1948 [11], originally called it “wavefront


reconstruction.” Many implementations of holography have been developed since its


inception, each with different advantages and shortcomings. Common to all holo-


graphic techniques, however, are two fundamental steps: recording and reconstruc-


tion. In the recording step, coherent light scattered from an object is interfered with


a mutually coherent reference on a transparent recording medium. Gabor called the


recorded interference pattern a hologram, derived from the Greek “holos,” meaning


complete, and “gramme,” meaning recording. In the reconstruction step, the holo-


gram is illuminated with the same coherent reference used in the recording step. The


original electromagnetic field scattered from the object can then be extracted from


the field transmitted through the hologram.


Digital holography uses a focal plane array (FPA) instead of a transparent record-


ing medium to digitally record the hologram [13]. In the reconstruction step, digital


signal processing is used to recover the amplitude and phase of the field scattered


from the object. Like holography, there are many implementations of DH. This thesis


will focus specifically on the off-axis IPRG.


The following is a mathematical description of the recording and reconstruction


steps used to implement DH in the off-axis IPRG. This description closely follows the


more rigorous derivation given in [21].
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Figure 1. Digital holography in the off-axis image plane recording geometry. Coherent
light from a master oscillator is split along two paths. The light on the signal path is
collimated and used to illuminate a distant target. Light scattered from the target is
imaged onto a focal plane array. The light diverted along the local oscillator path is
redirected to the exit pupil plane and diverges from a position that is offset from the
optic axis onto the FPA.


Figure 1 shows a diagram of the off-axis IPRG. In this application, a laser is used


as the coherent source and is termed the MO. The beam from the MO is split into


two paths that produce the illuminator and reference fields required for DH. Light


along the illuminator beam path is collimated and optics are used to uniformly flood


illuminate an object of interest. Light along the reference path is directed straight


into the FPA and is termed the LO.


In Figure 1, digital holography is treated as a black box imaging system. Rays


diverge from the plane of the object and propagate a distance zP until they are


intercepted by the entrance pupil where they are collimated. The collimated rays


leave the imaging system from the plane of the exit pupil where they propagate a


distance zI before focusing to a point in the image plane where the FPA is positioned


to record the hologram. It is important to note that the LO is located offset from the


optical axis and positioned in the plane of the exit pupil. Physically offsetting the


LO spatially offsets the complex pupil estimate from the other unwanted components


in the Fourier plane, which enables wavefront reconstruction.


It can be shown that for such an imaging system the complex electric field in the
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pupil plane, Up(x1, y1), and the complex electric field in the image plane, UI(x2, y2),


form a Fourier-conjugate pair [21], and obey the relation


UI(x2, y2) =
ejkzI


jλ0zI
exp


(
j
k


2zI
(x2


2 + y22)
)
F{UP (x1, y1)}νx= x2


λzI
,νy=


y2
λzI


, (1)


where j =
√−1, λ0 is the wavelength of the MO, k = 2π/λ0 is the angular wavenum-


ber, and zP and zI are the distances from the object to the entrance pupil and the


exit pupil to the image plane, respectively. Here, coordinates (x1, y1) define a location


in the pupil plane and coordinates (x2, y2) define the a location in the image plane.


By convention, the z coordinate is coaligned with the optical axis. The coordinates


(νx, νy) are Fourier plane spatial frequency coordinates. It is assumed that the spatial


components of the electric fields are stationary over the timescale of interest so time


dependences of the fields are omitted. This assumption is valid when the target is


stationary or when the movement of the target is insignificant relative to the inte-


gration time of the FPA. The 2-D spatial Fourier transform operator F{◦} is defined


as


F{V (x, y)}νx,νy = Ṽ (νx, νy) =


∫ ∞


−∞


∫ ∞


−∞
V (x, y)e−j2π(xνx+yνy)dxdy, (2)


and its inverse, F−1{◦}, is defined as,


F−1{Ṽ (νx, νy)}x,y = V (x, y) =


∫ ∞


−∞


∫ ∞


−∞
Ṽ (νx, νy)e


j2π(xνx+yνy)dνxdνy. (3)


The image of the object on the FPA is called the signal and its complex field,


US(x2, y2) = UI(x2, y2), (4)


can be used to obtain an estimate of the pupil plane complex field UP , which is


typically desired for wave-front sensing. Because UP (x1, y1) and UI(x2, y2) are Fourier
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conjugate-pairs, if one field is obtained, the other can be computed using (2) or (3).


The reference field incident on the FPA due to the off-axis injected LO can be


represented as the Fresnel approximation to a tilted spherical wave given by


UR(x2, y2) = ARe
jkzI exp


[
j
k


2zi
(x2


2 + y22)
]
exp


[
j
k


zI
(xRx2 + yRy2)


]
, (5)


where AR is a complex constant representing the LO electric field amplitude and


(xR, yR) are the pupil plane coordinates of the off-axis LO.


The hologram irradiance incident on the FPA is the irradiance of the sum of the


signal and reference fields expressed as


iH = |US + UR|2 = |US|2 + |UR|2 + USU
∗
R + U∗


SUR, (6)


where the superscript ∗ denotes the complex conjugate and the (x2, y2) dependences


of the fields are omitted for compactness. The third and fourth term of (6) contain


the desired US and its complex conjugate, U∗
S, but both terms are coupled to the


reference field.


8







(a) Signal (b) Fourier Plane Signal


(c) Local Oscillator (d) Fourier Plane LO


(e) Hologram (f) Fourier Plane Hologram


Figure 2. (a) Signal Irradiance, (b) Signal Fourier Transform, (c) LO Irradiance, (d) LO
Fourier Transform, (e) Hologram Irradiance, (f) Hologram Fourier Transform. Irradi-
ance scale is in units of photoelectrons. Fourier plane scale is in dB. The signal is the
image of a spectralon sample illuminated with a Gaussian beam. Speckle is observed.
The local oscillator irradiance has displays fringes that are a consequence of the fiber
stress rods and coherent imaging through the detector cover glass.


Figure 2 shows the recorded irradiances, (represented as photoelectron count (pe))


of the individual electric fields that compose the hologram (a,c), and the collected
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hologram irradiance (e). Each image is an array of 1536x2048 pixels and is displayed


in pe scale. The scale for each image spans 2 standard deviations above and below


the mean pe count over all pixels in the image. The recorded signal irradiance (a)


shows the image of a sample of spectralon that was flood illuminated with an expanded


Gaussian beam. Speckle due to coherent imaging is present. The mean signal strength


is 60±55 pe. The recorded LO irradiance (c) shows two sets of fringes that oscillate


diagonally across the image. These fringes are not modelled by (21) and will be


discussed in greater detail later. The mean LO irradiance is 5047±345 pe and is


significantly stronger than the signal irradiance. Note, no pixels have value below 0


pe, despite the lower bound on the scale. Finally, the hologram irradiance in (e) is


the sum of (a) and (c). Interference fringes are not easily visible due to strong speckle


in the signal and the unwanted fringes in the LO. The hologram mean pe count is


5147±586 pe. The SNR of this hologram is 100.


Once the hologram is recorded by the FPA, US can be estimated using digital


signal processing. To obtain US, the hologram irradiance is transformed into the


Fourier domain. Substituting (4) and (5) into (6) and applying the inverse 2-D


Fourier transformed defined in (3) using coordinate substitutions x2 = λzIνx and


y2 = λzIνy gives


F−1{iH(λ0zIνx, λ0zIνy)}x1,y1 =
1


λ2
0z


2
I


ĩH


(
−x1


λ0zI
,
−y1
λ0zI


)
= (7)


1


λ2
0z


2
I


UP (x1, y1)� UP (−x1,−y1) + |AR|2δ(x1)δ(y1)


+
A∗


R


jλ0zI
UP (x1 − xR, y1 − yR)− AR


jλ0zI
U∗
P (x1 + xR, y1 + yR),


where δ(x) is the Dirac delta function. The symbol � denotes the 2-D convolution
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operator defined such that


V (x, y)�W (x, y) =


∫ ∞


−∞


∫ ∞


−∞
V (x′, y′)W (x− x′, y − y′)dx′dy′, (8)


where x′ and y′ are dummy variables of integration.


To further the analysis, it is assumed that the pupil of the imaging system is


a circular lens with diameter dP so that the pupil plane complex electric field, UP ,


has a finite region of support. The truncated pupil plane complex electric field is


represented as


UP (x1, y1) = w(x1, y1)P (x1, y1), (9)


where P (x1, y1) is a mathematical abstraction that represents the pupil plane complex


electric field with infinite extent and w(x1, y1) is the window function applied by the


circular aperture. The window function is given by


w(x1, y1) = cyl


(√
x2
1 + y21
dP


)
, (10)


where the cylinder function is defined as


cyl(ρ) =


⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


1, 0 ≤ ρ < 0.5


0.5, ρ = 0.5


0, ρ > 0.5.


(11)


By making the circular pupil assumption, the individual terms of (7) can be analyzed


geometrically. The first term of (7) is a 2-D autocorrelation of the pupil plane electric


field and is centered on-axis. Under the circular pupil assumption, the support of the


autocorrelation term (where the term has non-zero values) is also a circular region


with twice the diameter of the pupil. The second term contains separable on-axis
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delta functions. The third and fourth terms contain off-axis amplitude-scaled copies


of the desired complex pupil plane electric field, UP , and its conjugate. The positions


of the third and fourth terms depend on the physical location of the LO, (xR, yR), so


it is possible for them to overlap with autocorrelation term in the Fourier domain. If


overlap is undesired, the pupils can be shifted away from the autocorrelation term by


physically displacing the injected LO farther from the optic axis, or it can be digitally


subtracted [9].


Figure 3 shows the result of applying a 2-D spatial Fourier transform to the


hologram irradiance. The twin conjugate pupil terms are located offset from the origin


and centered at (xR, yR) and (−xR,−yR). The separable on-axis delta functions are


also present at the origin. Additional delta functions are due to LO fringes and are


not included in (7), but will be discussed later. The autocorrelation term is also


present but it is faint due to a weak signal relative to the LO. Figure 2 (b,d) shows


the individual contributions to the Hologram Fourier domain from the signal and the


LO. The autocorrelation term is easily visible in (b) when the strong reference is not


present. It is clear that the autocorrelation has finite support in a circular region


twice the size of the pupil. (d) shows that the on axis content in the Fourier domain


is attributed to the LO only.


To extract the pupil plane electric field from (7), the desired pupil term is shifted


and a window is applied to obtain


U+
P = ĩH


(
−x1 − xR


λ0zI
,
−y1 − yR


λ0zI


)
w(x1, y1) (12)


=
A∗


R


jλ0zI
UP (x1, y1),


which can be inverted to obtain UP .


It is important to note that the preceding treatment of the off-axis IPRG only
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(a) Hologram Plane


F−1{◦}
�


F{◦}


(b) Fourier Plane


Figure 3. Hologram and Fourier planes. (b) shows the twin pupil terms located off-axis
from origin. Separable on-axis delta functions are visible. Additional delta functions
are due to LO fringes. The on-axis pupil autocorrelation term is present but is faint
due to weak signal.


addresses the qualitative steps required to estimate the pupil plane complex electric


field from the hologram plane irradiance. In digital holography, the hologram plane


irradiance is recorded by the FPA and converted into digital counts. The hologram


irradiance must be properly sampled by the FPA to ensure unambiguous support in


the Fourier plane when the recorded hologram is digitally transformed. An undersam-


pled hologram may alias in the Fourier domain causing pupils in an adjacent Nyquist


zone to spatially overlap with the desired estimate. A more rigorous treatment can


be found in [21].


0.1 Fourier Analysis of Local Oscillator Fringes


Recall that LO irradiance in Figure 2 (c) displayed two sets of fringes, even though


the LO is modelled as a flat field of uniform irradiance. There are two sets of fringes,


4 bright streaks that oscillate from the upper left corner to the bottom right corner


of the image that shall be referred to the low spatial frequency fringes, and smaller


oscillations that travel from the bottom left to the top right of the image, which shall


be referred to as the high spatial frequency fringes. Figure 4 shows the magnified


center of the LO Fourier plane shown in Figure 2 (d). The strong peak in the center
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are the separable delta functions that are the expected result of flat field illumina-


tion. Immediately adjacent to the center delta are two very low spatial frequency


deltas located at approximately (-0.001,0.0003) and (0.0017,-0.001). These deltas are


oriented along the same axis as the low spatial frequency fringes.


Figure 4. Magnified Fourier Domain Local Oscillator


Applying a circular notch filter over these two low frequency components as shown


in Figure 5 (a) and taking the Fourier transform as shown in Figure 5 (b) completely


removes the low spatial frequency fringes and leaves only the high spatial frequency


fringes. Since the Fourier domain is the pupil plane of the imaging system, these spec-


tral components must reside in the pupil plane. These low frequency components are


likely due to ”panda” configuration of the stress rods in the polarization-maintaining


fiber. The separable on-axis deltas are the core of the fiber, the low spatial frequencies


components are due to diffraction from the stress rods, and the remaining circular
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region is the cladding of the fiber.


(a) Filtered LO Fourier Domain (b) Filtered LO Image Domain


Figure 5. (a) Fourier Domain Local Oscillator with Low Spatial Frequency Components
Filtered Out, and (b) Image plane of filtered local oscillator.


The LO Fourier plane contains another set of strong high frequency components


located at approximately (-0.02,-0.004) and (0.02,0.004). Applying a circular notch


filter over these high spatial frequency components as shown in Figure 6 (a) and


taking the Fourier transform as shown in Figure 6 (b) completely removes the high


spatial frequency fringes and leaves only the low spatial frequency fringes. The high


spatial frequency components are likely due to an ”etalon” effect resulting from imag-


ing through the camera coverglass. Evidence for this is in the fact that the spatial


frequencies reside in the same quadrant as the pupil terms.


(a) Filtered LO Fourier Domain (b) Filtered LO Image Domain


Figure 6. (a) Fourier Domain Local Oscillator with High Spatial Frequency Components
Filtered Out, and (b) Image plane of filtered local oscillator.
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Finally, there are two off-center rings around the perimeter of Figure 4. It is


suspected that these rings are a result of reflections off the retainer that holds the


fiber tip in place. They are off center because the fiber is not situated in the center of


the retainer, and there are two because the Fourier transform of a real valued quantity


always has a conjugate.


Having characterized each source of the fringes in the LO Fourier domain, it is


important to remember that during the wavefront reconstruction step, the pupil is


windowed and the rest of the Fourier plane information is discarded. For the purposes


of this thesis, the extraneous frequency components in the LO are inconsequential.


Signal-to-Noise Ratio


Analytic Model.


The SNR of the DH system in the off-axis IPRG is defined as


S/NIPRG =
E{|ÛP (x1, y1)|2}
V{ÛP (x1, y1)}


, (13)


where ÛP (x1, y1) is the pupil plane electric field estimated using DH. E{◦} is the ex-


pectation value operator and V{◦} is the variance operator, both computed spatially


over two dimensions. To analyze SNR, this section departs from the deterministic


model of the pupil plane electric field and treats the field as a stochastic system due


to random arrival of photoelectrons on the FPA. If the field is oversampled by the


FPA, the estimated pupil plane electric field can be approximated as


ÛP (x1, y1) ≈ ητint
hν0


p2A∗
RUP (x1, y1) +


σI√
2
N1(x1, y1), (14)
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where η is the detector quantum efficiency, τint is the detector integration time, h is


Planck’s constant, ν0 is center frequency of the MO, p2 is the area of an individual


square pixel, σI is the estimate noise standard deviation, and Nk(x1, y1) is the kth


realization of a zero mean, unit variance complex-circular Gaussian random variable.


To further analyze the noise standard deviation, individual random processes that


result in noise are identified. Again assuming square pixels with width p, the average


irradiance at a pixel centered at x = np, y = mp is


îH(nxp,myp) =
1


p2


∫ ∞


−∞


∫ ∞


−∞
iH(x


′, y′)rect


(
x′ − nxp


p


)
rect


(
y′ −myp


p


)
dx′dy′, (15)


where xp and yp are the pixel pitches of the FPA and the rect function is defined as


rect(x) =


⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


1, |x| < 0.5


0.5, x = 0.5


0, |x| > 0.5.


(16)


The mean number of photoelectrons incident on a pixel centered at x = np,


y = mp in the FPA then is


mH(nxp,myp) =
ητint
hν0


p2îH(nxp,myp). (17)


Assuming noise is additive [21], the random process can be characterized as


m+
H(nxp,myp) = P{mH(nxp,myp)} = σrn1(nxp,myp)mH(nxp,myp), (18)


where P{◦} is the Poisson-noise operator. The first term describes the random process


associated with random arrival of photons on the FPA called shot-noise. The second


term describes noise that is associated with the FPA circuitry called read-noise. In
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the second term, σr is the read-noise standard deviation, and nk(x, y) is the kth


realization of a real-valued, zero-mean, unit-variance Gaussian random variable.


Due to the presence of a strong LO, it is assumed that mH(nxp,myp) 	 1, so that


(18) may be approximated as


m+
H(nxp,myp) ≈ mH(nxp,myp) + σs(nxp,myp)n2(nxp,myp) + σrn1(nxp,myp), (19)


where σs is the shot-noise standard deviation. In this approximation, the Poisson


random process is approxmiated as a Gaussian random process with variance equal


to the mean, expressed as


σ2
s(nxp,myp) = mS(nxp,myp) +mR(nxp,myp) +mB(nxp,myp), (20)


where mS(nxp,myp), mR(nxp,myp), and mB(nxp,myp) are the mean numbers of


photoelectrons incident on the FPA due to the signal, reference, and background,


respectively.


After the hologram irradiance is recorded by the FPA, the digital hologram can


be expressed as


d+H(nxp,myp) = gA/Dm
+
H(nxp,myp) + σqn3(nxp,myp), (21)


where gA/D is the gain factor that represents the number of counts recorded per de-


tected photoelectron, and σq is the quantization-noise standard deviation associated


with mapping of continuous energies to discrete counts. Assuming the analog signal


can occur equally randomly anywhere between digital counts, the random process


associated with quantization-noise can be characterized as a unit-width uniform dis-


18







tribution which has variance


σ2
q =


1


12
. (22)


In the implementation of IPRG developed in the previous section, it was asserted


that the reference field has uniform irradiance |UR(x, y)|2 = A2
R so mR(nxp,myp) =


mR. Again invoking the strong reference beam assumption, it is further assumed that


mR 	 mS(nxp,myp), mR 	 mB(nxp,myp), and mR 	 σq/gA/D so that the shot-


noise variance in (20) reduces to σ2
S ≈ mR. Further substitution of this approximation


into (21) yields


d+H(nxp,myp) ≈ gA/D


[
mH(nxp,myp) +


√
mRn2(nxp,myp) + σrn1(nxp,myp)


]
. (23)


Finally, (23) is divided by gA/D to obtain


m+
H(nxp,myp) ≈ mH(nxp,myp) + σnn4(nxp,myp) (24)


which suggests that the arrival of photoelectrons on the FPA can be approximated as


a Gaussian random process with a mean that depends on the strength of the reference


and variance,


σ2
n ≈ mR + σ2


r , (25)


that depends on the strength of the LO and detector read-noise variance.


Parseval’s theorem suggests that the noise power in the hologram plane is con-


served in the Fourier plane [21] so the noise standard deviation σn can be related to


the variance of the pupil plane estimate, σI that appears in (13) by


σ2
I =


π


4q2I
σn, (26)
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where


qI =
λzI
pdP


(27)


is called the image-plane sampling quotient and is the measure of the number of FPA


pixels across the half-width of the point-spread function of the imaging system. The


relationship described in (26) says that the variance of the electric field estimate is


equal to σn times the ratio of the pupil area to the Fourier plane area.


Finally, having derived an expression for σI , the expression for SNR given in (13)


can be expanded by acknowledging that the mean number of photoelectrons incident


on the FPA due to the signal, mS(nxp,myp) ≈ mS is approximately constant and


equal to


mS =
ητint
hν0


p2|AS|2, (28)


where AS is complex amplitude. Then


E{|ÛP (x1, y1)|2} ≈ mRmS, (29)


and


V{ÛP (x1, y1)} ≈ σ2
I . (30)


The expression for SNR can then be approximated as


S/NIPRG ≈ 4q2I
π


mRmS


mR + σ2
r


. (31)


Lastly, in the limit where mR 	 σr, the SNR can be further reduced to


S/NIPRG ≈ 4q2I
π


mS. (32)


This approximation is often called the shot-noise limit and is contingent on the as-
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sumptions that σ2
r << mr and that the FPA pixels are not saturated in the detection


process.


Fourier Plane Signal-to-Noise Ratio Calculation.


The statistical models for SNR detailed above require knowledge of the determin-


istic complex electric field that is estimated, and a statistically sufficient number of


realizations to characterize the noise data. An alternative method of computing SNR


in the Fourier plane is presented that was used in [4].


Qualitatively, the technique takes advantage of the spatial separation of the of the


twin pupil terms in the Fourier plane. The windowed pupil contains both the signal


energy and the noise energy. The sum of the signal energy, S, and noise energy, N, is


given by


S + N = |U+
P |2. (33)


To isolate the signal energy, the window is reflected over one of the axes into an


empty quadrant. The windowed empty quadrant is assumed to only contain noise.


The isolated signal energy then is the expectation value of the windowed empty


quadrant subtracted from the windowed pupil, given by


S =


〈
|U+


P |2 − |̃iH
(−x1 − xR


λ0zI
,
y1 − yR
λ0zI


)
w(x1, y1)|2


〉
. (34)


Note the Fourier plane hologram is reflected before it is center-shifted because the


Fourier transform of the real-valued hologram is symmetric in the spatial frequency


domain.


The isolated noise energy is the expectation value of the windowed empty quad-


rant. The SNR, then is the ratio of the isolated signal energy to the isolated noise
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energy, given by


N =


〈∣∣∣∣ĩH
(−x1 − xR


λ0zI
,
y1 − yR
λ0zI


)
w(x1, y1)


∣∣∣∣
2
〉
. (35)


Figure 7. Fourier plane signal-to-noise ratio measurement. An empty noise quadrant
is chosen and windowed to find a noise estimate.


Figure 7 shows the Fourier plane with white dashed lines illustrating the empty


noise quadrant that is used to subtract noise from the pupil. Finally, the SNR is


simply the ratio of the signal energy to the noise energy, expressed as


S/NFourier =
S


N
. (36)


System Efficiency


There are several factors that can decrease the SNR of a DH system. Decreases


in SNR due to the presence of these factors is called efficiency loss. While the mecha-


nisms that cause these inefficiencies are generally complex, their impact on SNR can
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typically be approximated as,


S/Ntotal = ηtotalS/NIPRG, (37)


where


ηtotal =
∏
i


ηi (38)


is the total system efficiency. Equation (38) suggests the total system efficiency is


the product of all the individual sources of system inefficiency, ηi. As a convention


0 ≤ ηi ≤ 1 where an efficiency of 1 is considered to be perfectly efficient and an


efficiency of 0 is completely inefficient and completely degrades system SNR.


There are several sources of system inefficiences. A factor that has already been


identified is the detector quantum efficiency, ηq, which accounts for the number of


photons incident on the FPA that are converted into photoelectrons. Other efficiencies


include, but are not limited to, the transmission efficiency, polarization efficiency,


and coherence efficiency. Transmission efficiency is related to energy loss as light


transmits through or is redirected by optics such as lenses, beam splitters, and mirrors.


Polarization efficiency is due to the mismatching of the polarization states of the


reference and signal paths of the DH system. In the case where a polarized MO is


used and the signal beam is depolarized due to rough surface scatter, the polarization


efficiency is 50%. A more complete list of sources of efficiency loss is compiled in [26].


Coherence efficiency is caused by the fact that a DH system relies on interference


of the coherent reference beam with the mutually coherent signal beam. In the case


where the MO is perfectly monochromatic and the reference and signal beam paths


are exactly the same length, the coherence efficiency is 1. In practice, the spectral


content of the MO has some width and the path length of the signal path, which must


propagate to a distant target and back, is significantly longer than the path length


23







of the reference.


Coherence Theory


Coherence theory is discussed in this section. In particular, temporal coherence


and its impacts on fringe visibility in an interferometer system is developed. Back-


ground on the Fabry-Perot interferometer is presented as a method to quantify the


coherence of a signal. Finally, coherence will be tied back to the SNR of a DH system.


Temporal Coherence and Interference.


The following discussion of temporal coherence and interference is compiled from


several foundational sources [14, 20, 28], however this discussion most closely follows


the derivation done by [20].


For simplicity, the analysis begins with two arbitrary and purely monochromatic


electric fields,


E1(t) = E1 exp(j(ω0t+ φ(t))) (39)


and


E2(t) = E2 exp(j(ω0(t+ τ) + φ(t+ τ))), (40)


that are made to superimpose at a single point. Here, E1 and E2 are the field


amplitudes, ω0 = 2πν0 is the field angular frequency, φ(t) is the time-variant phase of


the fields, and τ is a time delay that is caused by a propagation optical path length


difference (OPD) between the two fields.


The irradiance produced by the superposition of fields E1(t) and E2(t) is given
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by,


I = 〈|E1(t) + E2(t)|2〉 (41)


= 〈|E1(t)|2〉+ 〈|E2(t)|2〉+ 2Re{〈E1(t)
∗E2(t)〉}


= E2
1 + E2


2 + 2E1E2Re{〈ej[φ(t+τ)−φ(t)+ω0t]〉}


where 〈◦〉 is the temporal expectation value operator and Re{◦} denotes the real


part of a complex argument. While the first two terms are constant and depend on


the field amplitudes, the third term depends on the propagation time difference, τ .


The third term contains a quantity called the complex degree of coherence, which is


expressed as


γ(τ) = 〈ej[φ(t+τ)−φ(t)+ω0t]〉. (42)


The value of γ(τ) gives information about the coherence of the light source. For


example |γ(τ)| = 1 implies that the source is completely coherent whereas |γ(τ)| = 0


implies that the source is completely incoherent. A value in between corresponds to


a partially coherent source.


Using this new definition, the irradiance can be expressed as,


I(τ) = E2
1 + E2


2 + 2E1E2|γ(τ)| cos(arg{γ(τ)}), (43)


where arg{◦} denotes the modulus of a complex argument. From (43), it can be seen


that the irradiance takes on values between


Imax = E2
1 + E2


2 + 2E1E2|γ(τ)| (44)


and


Imin = E2
1 + E2


2 − 2E1E2|γ(τ)|, (45)
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corresponding to path length differences that result in constructive and destructive


interference. The measure of the fringe contrast of the interferogram is called the


visibility and is expressed as,


v =
Imax − Imin


Imax + Imin


(46)


=
2E1E2


E2
1 + E2


2


|γ(τ)|, (47)


which says that the fringe visibility is proportional to the complex degree of coherence.


Applying the above to DH, the arbitrary fields E1(t) and E2(t) are the signal


beam and reference beam which both originate from the MO. Since light along the


signal path must travel to a distant object and back, the reference path and signal


path lengths will vary by some difference, Δl, which is related to the propagation


time delay by Δl = cτ , where c is the speed of light. Setting E1(t) = E(t) for the


reference field and E2(t) = E(t+ τ) for the signal field and equating the second and


third lines of (41), the complex degree of coherence for a DH system can be expressed


as,


γ(τ) =
〈E(t)∗E(t+ τ)〉


〈|E(t)2|〉 . (48)


The numerator of (48) is the time-domain autocorrelation of the electric field. In-


voking the Wiener-Khinchin theorem, which states that the Fourier transform of the


autocorrelation of the light field is proportional to the power spectrum of the source


[20], yields the relationship


Fτ{E(τ)⊗ E(τ)} =


∫ ∞


−∞
[E(τ)⊗ E(τ)] exp(−jωτ)dω = P (ω), (49)


where ⊗ denotes the 1D cross-correlation operator and Fτ{◦} denotes the 1-D tem-
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poral Fourier transform operator, defined as


Fτ{f(τ)} = F (ω) =


∫ ∞


−∞
f(τ) exp(−jωτ)dω. (50)


The quantity P (ω) is called the power spectral density (PSD) of the electric field and


is a measure of the field’s spectral content.


For a perfectly monochromatic source, the power spectral density of the electric


field is a P (ω) = δ(ω−ω0). In practice, real sources have a finite bandwith. If a solid


state laser is used as the MO, the power spectral density of the laser can typically be


characterized by a Lorentzian distribution centered at the laser fundamental frequency


ν0. The Lorentzian distribution is given by


L(ν) =
Δν


2π


1


(ν − ν0)2 + (Δν/2)2
, (51)


where Δν is the full-width at half maximum of the distribution.


Fabry-Perot Interferometer.


A Scanning Fabry-Perot Interferometer (SFPI) may be used as a spectrum ana-


lyzer to measure the power spectral density of a light source. The SFPI system used


in this thesis consists of an etalon of two partially reflective mirrors separated by a


distance d, a detector, a controller, and an oscilloscope to read the detector signal.


Figure 8 shows a diagram of the system configuration.
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Figure 8. The scanning Fabry-Perot interferometer system consists of a Fabry-Perot
etalon, controller, and oscilloscope. Light from a source enters the etalon of two par-
tially reflective mirrors with curvature. The light self-interferes in the etalon cavity
and the transmitted light is recieved by a detector on the back end and analyzed by
an oscilloscope. One mirror is mounted on piezo-electric material that changes the
cavity length, d, proportional to the applied voltage. The controller produces a saw-
tooth ramp signal that is used to drive the piezo-electric material in the etalon, and a
synchronized square wave that is used as a reference for the oscilloscope.


The source beam is directed into the etalon where the mirrors cause incident


light to self-interfere. The irradiance resulting from the interference of the source is


transmitted through the rear mirror and measured by a photodiode detector. The


intensity of the measured interference fringe depends on the distance of separation of


the mirrors and spectral content of the light source. A ramp voltage signal from the


controller is used to drive a piezoelectric transducer on which one of the mirrors is


mounted, which changes the separation distance of the mirrors in proportion to the


applied voltage. As the mirrors scan to a separation distance of an integer multiple


of half the wavelength, constructive interference occurs. Due to the periodic nature


of the optical field, after the mirrors scan a certain distance, the pattern repeats.


As such, a square-wave voltage signal is produced by the controller and used as a


reference to synchronize the controller and the oscilloscope.


There are several important quantities that determine the performance of a SFPI.
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For example, the coefficient of finesse [14],


F =


(
2r


1− r2


)2


, (52)


depends on the reflectance of the mirrors, r. For highly reflective mirrors, F is


typically very large, so it is more convenient to define the finesse of a SFPI as,


F =
π
√
F


2
. (53)


For a monochromatic source, the resulting interference pattern takes on the form of


periodically repeating Gaussian distributions, and the finesse is the ratio of adjacent


maxima to the half-width.


The finesse is related to the chromatic resolving power of the SFPI by


R ≈ F
2d


λ0


. (54)


Finally, the free spectral range (FSR) is the distance between between two adjacent


peaks in the scan and is given by


FSR =
c


4d
(55)


for the Thorlabs SA 30-52 scanning Fabry Perot interferometer used in this thesis.


The FSR is the unambiguous bandwidth measurable by the SFPI and a high FSR is


required to measure sources with wide band spectral content.


Electro-Optical Phase Modulation.


An EOPM can be used to modulate the time-domain phase of an optical field.


Figure 9 shows a diagram of the EOPM system used in this thesis.
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Figure 9. The electro-optical phase modulation system consists of an electro-optical
phase modulator, signal generator, and analog amplifier. The signal generator produces
the sinusoidal signal to be split and amplified by the amplifier. The amplified signal
is used to drive crystals in the electro-optical phase modulator, which change index
of refraction proportional to the applied voltage, modulating the phase of the incident
beam.


The system consists of an electro-optical modulator, a signal generator, and an


amplifier. The phase modulator contains two Lithium Tantalate (LTA) crystals that


change index of refraction when a voltage is applied. The LTA crystals are suspended


in index matching fluid to eliminate back reflections and are secured between elec-


trodes and driven by a signal that originates at the signal generator. An amplifier is


used to increase the voltage of the signal from the signal generator before it arrives


at the EOPM.


The peak-to-peak voltage to the phase modulator that is required to induce a π


phase shift is called the half-wave voltage, Vπ, and is typically specified for some wave-


length, λπ. The half-wave voltage is approximately proportional to to wavelength, so


the half-wave voltage at an arbitrary wavelength can be found using


Vπ(λ) = Vπ(λπ)
λ


λπ


. (56)
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An amplifier with gain GdB
amp specified in dB, where


GdB
amp = 20 log10


(
Vout


Vin


)
, (57)


amplifies the signal input voltage according to


Vout = 10
GdB
amp
20 Vin = GV


ampVin. (58)


Finally, the applied phase shift is proportional to the voltage applied to the EOPM,


so the phase shift as a function of input voltage from the signal generated may be


calculated using


θ(Vin) = VinG
V
amp


π


Vπ


λ


λπ


. (59)


The quantity, θ(Vin), in addition to being the maximum phase shift that is imparted


by the EOPM, is also referred to as the depth of modulation.


In this thesis, only sinusoidal phase modulation is investigated. In turn, consider


the 1-D time-domain signal entering the phase modulator,


E(t) = E0 exp{j[ω0t+ φ0]}. (60)


If the light is modulated using a sinusoidal signal with oscillation frequency νm defined


by,


φ(t) = θ(Vin) cos(2πνmt), (61)


then the resulting time-domain signal that emerges from the EOPM is given by


Emod(t) = E0 exp{j[ω0t+ φ0 + φ(t)]}. (62)


The power spectral density of the resulting field can be calculated using the
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Wiener-Khinchin theorem. For a perfectly monochromatic source, the power spectral


density becomes a series of discrete lines located at ν = ν0 ± nνm (n = 0,1,2...) with


amplitudes proportional to J2
n(θ(Vin)) where Jn(x) is the nth order Bessel function


of the first kind . If a source with spectral width, such as a Lorentzian distribu-


tion, is used in place of a monochromatic source, the lines are each replaced with an


amplitude scaled Lorentzian distributions.


Visibility.


Assuming the source laser has a Lorentzian lineshape, if the MO linewidth and


OPD between the signal and LO were known, a model of the PSD can be simulated


for a specified frequency and depth of sinusoidal phase modulation. Taking the in-


verse Fourier transform of the simulated PSD yields the time-domain autocorrelation,


which is proportional to the complex degree of coherence, and therefore to the visi-


bility. Thus it is possible to compute a value for v(Δν,Δl, νm, θ(Vin)) that is accurate


to a multiplicative constant. Further, if the computed value for the visibility was nor-


malized to the visibility of an unmodulated signal, v(Δν,Δl, νm = 0, θ(Vin = 0)), the


multiplicative factor is negated and the effect of the MO linewidth, which manifests


as an exponential decay as a function of OPD, is also calibrated out. The relative


visibility then is the normalized quantity,


v̂(Δl, νm, θ(Vin)) =
v(Δν,Δl, νm, θ(Vin))


v(Δν,Δl, νm = 0, θ(Vin = 0))
, (63)


and is a function of the OPD, frequency of sinusoidal modulation, and depth of


sinusoidal modulation only.
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Figure 10. Simulated Visibility vs OPD at modulation frequencies νm = 0, 10, 20, 30,
and 40 MHz. The modulation depth is θ(Vin=1000 mVpp)=0.73π and the Lorentzian
linewidth is Δν =1 MHz.


Figure 10 shows the simulated visibility as a function of OPD and modulation


frequency at a constant modulation depth of θ = 0.73π and an assumed linewidth


of Δν = 1 MHz. The contribution of the linewidth is the exponential decay in the


visibility of the unmodulated signal. The exponential decay curve is the Fourier


transform of the Lorentzian distribution and is the upper bound on the visibility at a


set path length difference for any given modulation frequency. To find the visibility as


a function of modulation frequency from this plot, one need only draw a vertical line


at the desired OPD, and find where it intersects each curve. This plot implies that


for an OPD of less than 1 m, the visibility decreases monotonically as modulation


frequency increases up to 40 MHz, however at longer OPDs the intersection of the


curves become more chaotic. Interestingly, the first side lobe of the higher modulation
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frequency curves appear at shorter OPDs. It is evident from this plot that it is difficult


intuitively predict how modulation frequency will affect visibility for a an arbitrary


OPD.


The fringe visibility in a digital hologram typically appears as a spatial sinusoidal


amplitude modulation over the signal irradiance. However, in the presence of strong


speckle, the fringes are difficult to see.


(a) Magnified Signal Irradiance (b) Magnified Hologram Irradiance


Figure 11. 100x100 pixel cropped region of the signal and hologram irradiances. Both
scales are in units of photoelectrons.


Figure 11 (a) shows a 100x100 pixel region of the signal-only irradiance and Figure


11 (b) shows the same region of the hologram irradiance. Only speckle is observed


in Figure 11 (a). In Figure 11 (b), the hologram fringes modulate the speckle. This


figure is magnified enough that the fringes due to the LO are not observed, so the


periodic amplitude modulation that runs from the bottom left corner of the image to


the top right are the hologram fringes whose visibility are of interest. Figure 7 shows


that the twin pupils are approximately centered on the first and third quadrant of


the Fourier plane so their centers are located at (±0.25,±0.25), suggesting that the


normalized spatial frequency of the fringes is 0.25 per pixel. Inverting the frequency


gives a spatial wavelength of 4 pixels. Close inspection of Figure 11 (b) reveals that


the pixels are indeed spaced approximately 4 pixels apart (in fact, 4
√
2 since the pupil
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is on the diagonal).
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III. Experimental Methods


This chapter describes the apparatus that was assembled to implement digital


holography in the off-axis IPRG. In addition to digital holography, electro-optical


modulators were installed in the optical path to manipulate the coherence properties


of the MO and a SFPI was installed to analyze the extent to which the coherence


properties of the MO were degraded. Finally, this chapter discusses the different


modulation schemes under which data was collected using the DH system.


Digital Holography System.


Figure 12 shows a diagram of the DH system that was constructed to perform the


efficiency measurements. A 532 nm Cobolt Samba 1000 laser was used as the MO.


The Cobolt Samba is a diode-pumped solid state CW laser with a max power of 1


W with power stability that varies less than 2% over 8 hours. The Cobolt Samba


produces a beam that is linear polarized vertically and has a polarization ratio of


greater than 100:1. The beam waist is less than 300 μm and is located 20 cm in front


of the aperture. The beam is in the TEM00 mode and has M2 less than 1.1. The


spectral linewidth is less than 1 MHz corresponding to a coherence length greater


than 100 m.


A Thorlabs IO-5-532-HP visible free-space isolator was placed immediately after


the MO to eliminate back reflections. The first half-wave plate (HWP), HWP1, and


the first polarizing beam splitter (PBS), PBS1, were used to adjust the total power


to the apparatus, and remove the unwanted energy into a beam dump.


An electro-optical amplitude modulator (EOAM) and EOPM were placed in the


optical path to manipulate the coherence properties of the beam. The EOAM was


a Conoptics Model 350-160 modulator and was operating as an EOPM with the


output polarizer removed. The EOAM was not used in this thesis, but was installed
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to support future DH coherence experiments. Its presence in the optical path did


attenuate the transmitted beam due to a wavelength mismatch of the anti-reflective


coating.


Figure 12. The digital holography system that was assembled to measure the effect
of sinusoidal phase modulation on coherence. A 532 nm laser is used as the master
oscillator and two phase modulators are placed in the optical path to degrade its co-
herence properties. Two subsequent beam splitters divert part of the phase-modulated
beam to be used as the local oscillator and to be analyzed using a scanning Fabry-Perot
interferometer. The transmitted signal is expanded and used to uniformly illuminate
a sample of spectralon. The illuminated spot is imaged onto the focal plane array.


The entire EOPM system was composed of a Conoptics 360-40 modulator, a


Conoptics Model 550 amplifier, and a Rohde and Schwarz RTO2044 oscilloscope


signal generator module. The signal generator was used to drive the EOPM with a


sine wave of various frequencies and phase shift amplitudes. Together the MO and


EOPM simulate a MO with controllable coherence properties.


Following the EOPM, a second HWP and PBS combination (HWP2 and PBS2)


was used to split off part of the source beam to use as the LO. A fiber coupler was used


to inject the beam into a 2 m Thorlabs PC-155-PM-FC-2 polarization-maintaining


FC/APC fiber optic cable that guided the beam to the pupil of the DH system. A


retainer was used to install the output end of the fiber in the plane of the pupil of
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the imaging system offset from the optical axis.


A third HWP and PBS combination (HWP3 and PBS3) was used to split off


part of the source beam to analyze using a SFPI. A Thorlabs SA30-52 Fabry-Perot


etalon with detector was used to measure the power spectral density of the beam.


The SA30-52 has a FSR of 1.5 GHz and linewidth of less than 1 MHz. The SFPI


was controlled using a Thorlabs SA201 spectrum analyzer controller and analyzed


using the same Rohde and Schwarz RTO2044 oscilloscope used to drive the EOPM.


The FPI was only used to verify the effectiveness of the EOPM and was never used


during hologram collection. A beam block was placed between PBS3 and the SFPI


during data collection to prevent back reflections from propagating into the LO fiber


coupler.


The remaining source beam that propagated through PBS3 was used to flood


illuminate a sample of spectralon with 99% Lambertian reflectivity. Because of beam


expansion due to the longer optical path, a two lens and pinhole system was used to


refocus the beam. A Thorlabs GBE20-A 20X beam expander was used to expand the


beam before illuminating the spectralon. The expanded beam formed a 6±0.5 cm


spot on the spectralon which was the target of the DH system.


A lens was used to image the target onto the a FLIR Grasshopper3 CMOS camera.


The camera has a 2048x1536 pixel array with 3.45 μm square pixels. The camera


was operated in mode 7. In mode 7, the integration time was 1 msec, the read noise


variance was 5.5 pe2, and the quantization noise variance was less than 1 pe2. No


digital non-uniformity was applied to the data collected using this camera. While


the camera originally had two protective coverglasses in front of the FPA, the front


coverglass was removed to mitigating an etalon effect caused by imaging a coherent


source. The FPA was controlled by a laptop using Matlab-based software.


The OPD between the LO and signal paths, measured from PBS2 to the imaging
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lens in front of the FPA, was 3.14±0.20 m. The combination of measuring the multiple


legs that made up the signal path and computing the optical path length of the 2 m


fiber resulted in a relatively large uncertainty in the estimated .


Data Collection and Processing.


This section describes the data collection procedure used in this experiment. Three


independent variables were investigated for their impact on coherence efficiency: 1)


the depth of the sinusoidal modulation, θ(Vin), 2) the frequency of the sinudoidal


phase modulation, νm, and 3) the baseline SNR.


In the following, a “SNR measurement” refers to the a mean SNR value computed


from 100 measured holograms. The SNRs of each hologram was computed using the


Fourier plane method described in Chapter II and the mean of the SNRs was used to


compute the measured efficiencies that are reported in the next section.


The depth of modulation was varied by adjusting the signal amplitude from the


signal generator. SNR measurements were taken at Vin = 500 mVpp, 750 mVpp,


and 1000 mVpp. Using (59), the calculated maximum phase shifts imparted by the


EOPM corresponding to these input signal amplitudes were θ = 0.38π, 0.55π, and


0.73π, respectively. Greater depths of modulation were inaccessible because 1000


mVpp was the maximum tolerable input peak-to-peak voltage to the amplifier.


For each depth of modulation, SNR measurements were taken for modulation


frequencies between 20 MHz and 100 MHz in 5 MHz increments. Frequencies below


20 MHz were inaccessible due to a 20 MHz high-pass filter in the amplifier. A SNR


measurement was taken with no modulation and used as a baseline. For each depth


of modulation, a baseline SNR of 100 was established prior to modulation.


For the case of Vin = 1000 mVpp, two additional datasets were collected at baseline


SNRs of 75 and 125.
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Since the coherence efficiency, ηcoh, is defined with respect to a perfectly monochro-


matic source, relative coherence efficiencies (RCE) are reported. The RCE corre-


sponding to a specific modulation frequency is,


η̂coh(νm) =
(S/N)|νm
(S/N)|νm=0


, (64)


which is the ratio of the measured SNR at the modulation frequency to the baseline


SNR (νm = 0). Normalizing to the baseline SNR removes the efficiency loss incurred


due to the finite linewidth of the MO.


Lastly, in addition to SNR measurements, PSDs for each depth of modulation


were measured using a SFPI and used to verify that the phase modulation system


was functioning as expected.
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IV. Results


This chapter presents the measured PSDs and relative coherence efficiencies that


were collected for each depth of modulation and at each modulation frequency. The


record data are compared to the theoretical predictions discussed in Chapter II.


Power Spectral Density


In this section, the PSDs measured by the SFPI are presented and qualitatively


compared to the theoretical predictions. Figure 13 (a) shows the PSDs of the un-


modulated signal. Figure 13 (b-d) shows the PSDs when the source was sinusoidally


phase modulated at νm = 20 MHz for modulation depths corresponding to Vin =500


mVpp, 750 mVpp, and 1000 mVpp. Each PSD is the average of 8 scans from the SFPI


and each one is normalized to the strongest peak.


Figure 13 (a) shows a single peak representing the lineshape of the carrier fre-


quency of the MO. The measured lineshape is well approximated by a Lorentzian


distribution with a full-width at half-maximum of Δν = 1 MHz as expected, and


the measured linewidth of the scan shown is approximately 1±0.1 MHz, however


this value is not an accurate measurement of the linewidth. Both the laser and the


SFPI are reported to have less than 1 MHz linewidth, so the measured linewidth is


really the sum of the laser and SFPI linewidth, and not the laser linewidth alone.The


residuals suggest asymmetry in the Lorentzian distribution of the line.


Figures 13 (b-d) show the PSDs that result from 20 MHz sinusoidal modulation


at modulation depths corresponding to Vin =500 mVpp, 750 mVpp, and 1000 mVpp,


respectively. Amplitude scaled duplicates of the MO lineshape appear at positive and


negative integer multiples of the modulation frequency. As the depth of modulation


increases, more energy is transferred from the carrier to the side bands. When Vin =
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1000 mV, the carrier is fully suppressed.


(a) Unmodulated (b) Vin = 500mVpp


(c) Vin = 750mVpp (d) Vin = 1000mVpp


Figure 13. Measured and theoretical power spectral densities of the (a) unmodulated
signal, (b) sinusoidally modulated signal at Vin=500 mVpp, (c) sinusoidally modulated
signal at Vin=750 mVpp, and (d) sinusoidally modulated signal at Vin=1000 mVpp.
The solid blue lines show power spectral densities measured from a single trace of
the scanning Fabry-Perot interferometer. The red dashed lines show the expected
theoretical power spectral densities.


The residuals show that there are several discrepancies between the measured


PSDs and the PSDs that theoretically should result from sinusoidal phase modulation.


First, the relative amplitudes of the side bands deviate from the Bessel amplitudes


significantly. In Figure 13 (b), the theory underestimates the measured amplitude of


the first-order side band by approximately 0.26. In Figure 13 (c) and Figure 13 (d),


the curves are normalized to the first order side band, but the theory overestimates


the amplitude of the carrier by approximately 0.18 in Figure 13 (c), and overestimates


the amplitude of the second-order side band by approximately 0.3 in Figure 13 (d).
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Finally, in Figure 13 (c) and Figure 13 (d), the first-order side bands located at -20


MHz has slightly higher amplitude than the first-order side band located at +20 MHz.


The actual measured values of the peaks are shown in Figure 14. These values are


used to compute the theoretical curves in the following section.


These discrepancies suggest that the predicted depth of modulation computed


using the values for gamp and Vπ provided by the manufacturers may not be completely


accurate. Alternatively, imperfections in the sinusoid output of the signal generator,


signal distortion caused by the amplifier, or slight misalignment of the Fabry-Perot


etalon may account for the observed deviations from the theory.


Figure 14. Measured Power Spectral Density Relative Peak Heights vs. Theoretical.


Since there is disagreement between the measured PSDs and the theoretical pre-


dictions, the analysis will proceed using both sets of values to analyze the measured


data. The peak values predicted by the theory are what is expected of an ideal


EOPM and will be referred to as the ”Ideal Modulator” peak values. The peak val-


ues measured by the SFPI will be referred to as the ”Fabry-Perot (FP) Measured”


values.
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The Visibility-Squared Model


The previous discussion of coherence theory suggests that the relative coherency


should be related to the relative visibility. Assuming a polynomial relationship where


η̂coh = Cvn, (65)


where C is the proportionality constant, and n is the polynomial order, the power


can be regressed from a log-log plot. Figure 15 shows that a linear function is a


good fit for the log-log plot. The regression has r2=0.9261 further suggesting a good


fit. The estimated slope is m = 1.977±0.1442 and the estimated intercept is b =


-0.1848±0.2250. The slope is approximately 2, and is plausibly 2 to within one stan-


dard deviation of the estimate, suggesting that the relative efficiency is proportional


to the relative visibility-squared (RVS). Further, the intercept is approximately 0, and


again is plausibly so to within one standard deviation of the estimate, suggesting that


the proportionality constant A = 1, so the relative coherence efficiency is equal to


the RVS. Moving forward, the measured data are compared against the RVS model,


however the the model is computed using both the Ideal Modulator PSD peak values


and the FP Measured values.
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Figure 15. Log-Log Regression of Relative Coherence Efficiency vs Relative Visibility.
The equation of the best fit line is y = 1.9771x-0.1848. The fit has coefficient of
determination r2 = 0.9261 suggesting a good fit to the data.


Relative Coherence Efficiency


In this section, the RCEs measured for each depth of modulation at each mod-


ulation frequency are presented. The recorded data are compared against the RVS


model computed using both Ideal Modulator and FP Measured PSD peak values.


Figure 16 shows the measured RCE as a function of the modulation frequency


at modulation depth corresponding to an input signal of Vin =500 mVpp taken at a


baseline SNR of 100. In addition to the measured data, both FP Measured and Ideal


Modulator RVS curves are plotted.


Residuals are plotted below the RCE plot. The measured SNR of the unmodulated


signal was used as the normalization baseline so its residual is 0 and it is not reported.


The uncertainty in each data point is computed as the ratio of mean to standard
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deviation over the 100 holograms. The average uncertainty over the 19 data points


displayed in Figure 16 is 0.0091. Since the overall uncertainty was so low, error bars


for individual measurements are not reported.


Figure 16. Relative coherence efficiency vs. phase modulation frequency at modulation
amplitude Vin = 500 mVpp and baseline SNR = 100. In addition to the measured
data, both FP Measured (solid line) and Ideal Modulator (dashed line) RVS curves are
plotted for an optical path length difference of 3.14 m. Residuals are plotted below.


The measured RCEs show strong agreement to both the FP Measured and Ideal


Modulator predictions deviating by a root-mean-square error (RMSE) of 0.0378 for


the FP Measured, and a RMSE of 0.0397 for the Ideal Modulator predictions. The


residuals are not distributed normally and have some structure, which suggests that


systematic errors are present.


Figure 17 shows the measured RCE as a function of the modulation frequency


at modulation depth corresponding to an input signal of Vin = 750mVpp taken at a


baseline SNR of 100. The average uncertainty over all the data points is 0.01. Again,


46







both FP Measured and Ideal Modulator predictions are plotted with the measured


data. The FP Measured predictions have RMSE 0.0429 and the Ideal Modulator pre-


dictions have RMSE 0.373. The Ideal Modulator model underpredicts the measured


data in the region between 35 MHz and 60 MHz, but the FP Measured predictions


have greater overall RMSE. Qualitatively, the FP Measured model appears to bet-


ter fit the data because it more accurately predicts the behavior of the data in the


center frequencies. Again, the residuals appear to have sinusoidal structure further


suggesting that systematic errors are present.


Figure 17. Relative coherence efficiency vs. phase modulation frequency at modulation
amplitude Vin = 750 mVpp and baseline SNR = 100. In addition to the measured
data, both FP Measured (solid line) and Ideal Modulator (dashed line) RVS curves are
plotted for an optical path length difference of 3.14 m. Residuals are plotted below.


Figure 18 shows the measured RCE as a function of the modulation frequency


taken at modulation depth corresponding to an input signal of Vin = 500mVpp at


baseline SNRs of 75, 100, and 125. In this scenario, where the modulation depth was
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the greatest, the FP Measured predictions, which had RMSE 0.391, greatly outper-


formed the Ideal Modulator predictions, which had RMSE 0.1007. This suggests that


the measurements taken by the SFPI are in fact accurate and that the EOPM may


deviate from ideal performance at high depths of modulation. Again, the residuals


appear to have similar structure to the Vin = 750mVpp case for the Ideal Modulator


predictions, but are randomly distributed in for the FP Measured predictions.


Figure 18. Relative coherence efficiency vs. phase modulation frequency at modulation
amplitude Vin = 1000 mVpp and baseline SNR = 75 (o markers), 100 (x markers), and
125 (+ markers). In addition to the measured data, both FP Measured (solid line)
and Ideal Modulator (dashed line) RVS curves are plotted for an optical path length
difference of 3.14 m. Residuals are plotted below.


At the greatest depth of modulation, the RCEs were also measured at 3 different


baseline SNRs. The average uncertainty in the measurements at these 3 baseline SNRs


are 0.0118, 0.0097, and 0.0098 for baseline SNR = 75, 100, and 125, respectively. The


RCEs do not appear to depend on the baseline SNR, at least in high SNR regime,
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however the data suggests that higher baseline SNR produces slightly higher RCE


measurements for the same modulation frequency.


Sinusoidal phase modulation is interesting in that its effect on SNR immediately


obvious. On the one hand, degrading the coherence properties of the MO using this


method of modulation does degrade SNR as expected, however for certain modulation


frequencies, the SNR recovers. This recoherence effect in which the SNR returned to


its unmodulated value was observed for all three depths of modulation. Though the


observed behavior defies common sense, it is an expected outcome when compared to


the RVS model.


Discussion of Errors


In general, the measured data tended to agree with the RVS values, however for


every depth of modulation the residuals were not normally distributed, and further


appeared to have periodic structure. Sources of error can be separated into two


categories. They are errors in the assumptions used in the model and errors in


measurement.
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Figure 19. Relative coherence efficiency vs. phase modulation frequency at modulation
amplitude Vin = 1000 mVpp and baseline SNR = 100. RVS curves are plotted for
optical path length differences of 2.94 m (dashed line), 3.14 m (solid line), and 3.34
m (dotted line). Residuals corresponding to the 3.14 m theoretical curve are plotted
below.


To assess potential model errors, the parameters on which the visibility depended


are revisited. The visibility depended on the lineshape of the MO, depth of modula-


tion, frequency of modulation, and the OPD. The lineshape of the MO was assumed


to be Lorentzian with linewidth of 1 MHz, however due to resolution limitations of


the SFPI, a reliable measurement was never taken. If the Lorentzian lineshape as-


sumption was accurate, then an accurate measurement of the linewidth would be


unnecessary because it was calibrated out by dividing out the unmodulated efficiency


(in the calculation of the relative coherence efficiency). The depth of modulation


depended on values specified by the manufacturer for gamp and Vπ. Further, the value


for Vπ was extrapolated from a Vπ that was specified at a different wavelength. Losses
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due to propagation through transmission cables were also not included in the model.


The OPD also strongly impacts the coherence efficiency, however Figure 19 shows


that varying the OPD scales the frequency dimension (x-axis) rather than the effi-


ciency dimension (y-axis). This suggests that 3.14 m is in fact a good estimate of the


OPD of the DH system.


The predictions made using the FP Measured data generally outperformed the


Ideal Modulator predictions, but especially so at high depths of modulation, suggest-


ing that the modulator performance degrades at high input voltages.


Instrumentation errors are also likely to be present in the data and would explain


why the measured PSDs deviated from predictions. Frequency drift of the MO was


observed on the SFPI, which affected the phase shift imparted by the EOPM, but


also affected the measurements taken by the SFPI. Though the EOAM was not used


in this experiment, it was still present in the optical path. Since the EOAM was not


anti-reflective coated for 532mn light, transmission through the EOAM deteriorated


the beam quality. Multiple reflections inside the EOAM cavity were also possible.


The EOAM was installed to support future DH coherence experiments and could not


be removed without complete realignment of the DH system.


On activation of the analog amplifier, the EOPM was observed to slightly decrease


transmissivity, even though phase modulation should not have changed the irradiance


of the beam. The change in transmissivity varied by the frequency of modulation, but


also varied temporally so thermal effects are suspected. Finally, the signal driving


the EOPM was assumed to be a perfect sinusoid, however the signal generator likely


had imperfections, and it was possible that amplifier also introduced some signal


distortion.
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V. Conclusion


Summary


A DH system in the off-axis IPRG was assembled and used to measure the effects


of the coherence properties of the MO on SNR. The coherence properties of the MO


were degraded using sinusoidal phase modulation that imparted maximum phase


shifts of 0.38π, 0.55π, and 0.73π, at modulation frequencies of 20MHz to 100MHz.


While sinusoidal modulation did degrade the SNR for most modulation frequencies


at every depth of modulation, the SNR was observed to recover at higher modulation


frequencies. A relative visibility-squared model was regressed using the collected data


and two sets of predictors were used to inform the model. The Ideal Modulator pre-


dictors were parameters computed from manufacturer specifications and represented


how one would expect the modulator to alter the electric field. The FP Measured


predictors were measured using a SFPI and gives another perspective intot he actual


state of the electric field of the MO. In general, the FP Measured data predictions


outperformed the Ideal Modulator predictions, and especially so at the greatest depth


of modulation. The measured RCEs deviated from the best case theoretical RVS by


RMSEs of 0.0378, 0.0373, and 0.0391 for the 0.38π, 0.55π, and 0.73π depths of mod-


ulation, respectively. Coherence efficiencies were measured at baseline SNRs of 75,


100, and 125 at the greatest depth of modulation, and it was found that the system’s


baseline SNR did not significantly impact the coherence efficiency, at least in the high


SNR regime.


Impact


The DH literature has extensive simulations and efficiency studies that quantify


the performance of a DH system implemented in various geometries and used in
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difference sensing scenarios, however no research has ever directly measured effect of


coherence on SNR. The data presented in this work addresses that gap by providing


empirical data collected under laboratory controlled decoherence situations. The


RVS model was shown to be an effective predictor of coherence efficiency, capable


of estimating the efficiency to under 4%. This information can be used to better


characterize the total SNR loss due to inefficiencies in a DH system. Since the DH


applications of interest typically operate in already low SNR regimes, it is critically


important that the effective SNR be accurately modeled to inform system design


considerations. Finally, it was shown that DH is highly sensitive to coherence effects


to the point that the RCE curves were able to diagnose degraded performance in the


EOPM. This suggests that DH has the potential to be used as a tool to measure the


coherence of a source.


Future Work


While sinusoidal modulation does degrade the coherence properties of the MO,


it does so by shifting energy from the carrier into the side bands. However, the


lineshapes and linewidths of the sidebands, which is generally associated with the


coherence length of the system, are still identical to the MO’s. Different methods


of modulation such as pseudo-random bit sequence or white Gaussian noise wave-


forms should be investigated since these methods have been reported to alter the MO


linewidth and lineshape. These alternate modulation signals could also be applied


with sinusoidal modulation to investigate the composite coherence efficiency.


The DH system used in this experiment used a CW laser as the MO. Coherence


efficiency measurements should also be measured for a pulsed laser. Finally, while


the empirical data used to regress the RVS model, no rigorous derivation has been


performed to conclusively draw that correlation. A derivation from first principles
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should be performed to establish conclusively that a quadratic relationship between


the visibility and coherence efficiency truly exists.
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